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The dipole–multipole transition in rapidly rotating dynamos is investigated through the analysis

of forced magnetohydrodynamic waves in an unstably stratified fluid. The focus of this study is

on the inertia-free limit applicable to planetary cores, where the Rossby number is small not only

on the core depth but also on the length scale of columnar convection. By progressively increas-

ing the buoyant forcing in a linear magnetoconvection model, the slow Magnetic-Archimedean-

Coriolis (MAC) waves are significantly attenuated so that their kinetic helicity decreases to zero;

the fast MAC wave helicity, on the other hand, is practically unaffected. In turn, polarity reversals

in low-inertia spherical dynamos are shown to occur when the slow MAC waves disappear under

strong forcing. Two dynamically similar regimes are identified – the suppression of slow waves

in a strongly forced dynamo and the excitation of slow waves in a moderately forced dynamo

starting from a small seed field. While the former regime results in polarity reversals, the latter

regime produces the axial dipole from a chaotic multipolar state. For either polarity transition, a

local Rayleigh number based on the mean wavenumber of the energy-containing scales bears the

same linear relationship with the square of the peak magnetic field measured at the transition. The

self-similarity of the dipole–multipole transition can place a constraint on the Rayleigh number

for polarity reversals in the Earth.

1. Introduction

The dynamo operating in the Earth’s outer core generates a predominantly North–South

dipole magnetic field. Occasionally, the magnetic dipole axis flips its orientation and retains

its approximate alignment with the Earth’s rotation axis. The last such polarity reversal occurred

nearly 0.78 million years ago (Merrill 2011). Geomagnetic excursions, the periods during which

the magnetic axis wanders up to 45◦ from the rotation axis before returning to its original state,

have been more frequent in the Earth’s past. As reversals and excursions are likely to result

from similar convective states of the core (Gubbins 1999; Valet et al. 2005), it is possible that

the geodynamo operates for long periods in a state marginally below the threshold for reversals

(Olson & Christensen 2006).

The first polarity reversals in numerical dynamo models were obtained by Glatzmaier &

Roberts (1995a; 1995b). Since then, several other studies reported reversals in comparable

parameter regimes (Sarson & Jones 1999; Kutzner & Christensen 2002; Wicht & Olson 2004;

Olson et al. 2009; Sreenivasan et al. 2014), and it is now well accepted that dynamo reversals

occur under strong buoyancy-driven convection. Any explanation for polarity reversals must

follow from an explanation for the preference for the axial dipole in planetary dynamos. The

kinetic helicity uuu · ζζζ (where uuu is the velocity and ζζζ is the vorticity) generated in convection

columns that arise in rapid rotation is thought to be essential for dipolar dynamo action (Moffatt

1978; Olson et al. 1999; Sreenivasan & Jones 2011). Consequently, the loss of columnar helicity
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can lead to collapse of the dipole (e.g. Soderlund et al. 2012). A number of numerical dynamo

models show a dipole–multipole transition for Roℓ ≈ 0.1, where Roℓ is a ‘local’ Rossby number

that measures the ratio of nonlinear inertial to Coriolis forces on the length scale of columnar

convection (Christensen & Aubert 2006). Since linear inertial waves are believed to sustain the

columnar vortices in rotating turbulence (Davidson et al. 2006), the above polarity transition

may result from the suppression of inertial waves in the dynamo above a critical value of

Roℓ (McDermott & Davidson 2019). Multipolar solutions may also be found when the ratio

of nonlinear inertia to Lorentz forces exceeds a critical value (Zaire et al. 2022). That having

been said, in the rapidly rotating limit of zero nonlinear inertia, the helicity of columnar vortices

aligned with the rotation axis is considerably enhanced by the magnetic field in the dynamo

(Sreenivasan & Jones 2011). It is thought that this field-induced helicity is essential for the

formation of the axial dipole in planetary dynamos. Under strong buoyancy-driven convection,

the magnetically enhanced columnar flow structures break down, leading to polarity reversals.

Given the spatial inhomogeneity of the magnetic field, a global analysis of forces in the dynamo

cannot possibly reveal how buoyancy offsets the Lorentz–Coriolis force balance in isolated

columns. The analysis of helical dynamo waves at progressively increasing forcing can, on the

other hand, provide an insight into the role of buoyancy in the loss of columnar helicity. This

study aims to place a constraint on the convective state of the dynamo that admits reversals in the

inertia-free limit, where the Rossby number is small not only on the depth of the planetary core

but also on the columnar length scale transverse to the rotation axis.

In convectively-driven planetary cores, isolated density disturbances generate fast and slow

Magnetic-Archimedean-Coriolis (MAC) waves under the combined influence of background

rotation, magnetic field and unstable stratification. The fast waves are inertial waves weakly

modified by the magnetic field and buoyancy while the slow waves are magnetostrophic waves

produced by localized balances between the magnetic, Coriolis and buoyancy forces (Braginsky

1967; Busse et al. 2007). In rapidly rotating dynamos, the fast MAC waves of frequency ∼ ωC,

the frequency of linear inertial waves, exist in both weak and strong-field states. The intensity of

slow MAC wave motions is comparable to that of the fast waves when the initial ratio of Alfvén

to inertial wave frequencies,
(

ωM

ωC

)

0

∼ VM

2Ωδ
∼ 10−2, (1.1)

where VM is the Alfvén wave velocity based on the peak magnetic field, Ω is the angular velocity

of rotation, δ is the length scale of the buoyancy disturbance and the subscript ‘0’ refers to the

initial state of the disturbance as it is released into the flow (Varma & Sreenivasan 2022). Because

of the anisotropy of the convection, the instantaneous value of ωM/ωC for parity between fast

and slow wave motion would be higher than its initial value, and inferred to be ∼ 0.1 from the

spherical shell dynamo models of Varma & Sreenivasan. In the energy-containing scales, given

by the range of spherical harmonic degrees greater than the mean value at energy injection, the

kinetic helicity in the nonlinear dynamo is nearly twice than that in the hydrodynamic dynamo

at the same parameters, where the Lorentz force is zero. This result implies that the helicity

of the slow MAC wave motions in the nonlinear dynamo would be of the same magnitude as

that of the inertial waves in the hydrodynamic dynamo. Since the hydrodynamic dynamo does

not generate the axial dipole, we infer that the slow waves are essential for dipole formation.

Although the magnetic diffusion frequency ωη is the lowest frequency in the dynamo, small but

finite magnetic diffusion can place a lower bound on the length scale that supports slow MAC

waves in the energy-containing scales of the dynamo. Linear magnetoconvection analysis of a

forced damped system (Sreenivasan & Maurya 2021) indicates that, for
(

ωη

ωC

)

0

∼ η

2Ωδ 2
. 10−5, (1.2)
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where η is the magnetic diffusivity, the energy of the fast and slow wave motions are comparable.

(Here, ωM/ωC ∼ 0.1). Therefore, slow wave motions at length scales ∼ 10 km can be influential

in the generation of the dipole field. At higher Eη (defined in equation 2.25), the slow wave

energy falls below the fast wave energy, implying that scales smaller than ∼ 10 km are rapidly

damped by magnetic diffusion.

The role of buoyancy in a rapidly rotating dynamo is not merely in the excitation of MAC

waves. In a convective dynamo that evolves from a small seed magnetic field, the slow MAC

waves are first excited when |ωM| > |ωA|, where ωA is a measure of the strength of buoyancy

in an unstably stratified fluid and has the same magnitude as that of the frequency of internal

gravity waves in a stably stratified fluid (Varma & Sreenivasan 2022). As the dynamo field

intensity increases from its starting seed value, |ωM| progressively increases and exceeds |ωA|,
after which the axial dipole eventually forms from a chaotic multipolar state. Thus, the inequality

|ωC| > |ωM| > |ωA| > |ωη | represents a large region of the parameter space where dipole-

dominated dynamos exist. If a rotating dynamo is subject to progressively increasing buoyant

forcing, the larger self-generated fields would result in progressively larger ωM until a state is

reached where |ωA| ∼ |ωM| as the field attains its highest intensity for a given rotation rate.

Here, the slow MAC waves disappear, likely causing collapse of the dipole. This transition from

dipole to polarity-reversing states is dynamically similar to the transition from a multipolar state

to the dipole that occurs in the growth phase of a dynamo starting from a seed field. Since

ωC remains the dominant frequency while forcing is increased, the dynamo reverses polarity

in a rotationally dominant regime where slow magnetostrophic waves are suppressed. Although

increased forcing may result in enhanced nonlinear inertia in numerical dynamo models, we

consider it unlikely that inertia has any role in polarity transitions in the Earth even for the

smallest buoyancy disturbances that support MAC waves. For disturbances of size L⊥ ≈ 15 km

transverse to the rotation axis, the actual ratio of nonlinear inertia to Coriolis forces,

|∇× (uuu ·∇)uuu|
|2(ΩΩΩ ·∇)uuu| ∼ u⋆L

2Ω L2
⊥
≈ 0.03, (1.3)

taking L = 2260 km and u⋆ = 5×10−4 ms−1 (Starchenko & Jones 2002). Low-inertia numerical

dynamos must have a small Rossby number based on the length scale of convection. The use

of magnetic Prandtl number Pm = ν/η ∼ 1–10, where ν is the kinematic viscosity, is useful

in realizing strong magnetic fields in numerical simulations (Willis et al. 2007; Teed et al.

2015; Dormy 2016) in the inertia-less regime relevant to rotating planetary cores. Although the

choice of a large Pm at moderate Ekman number E = ν/2ΩL2 ∼ 10−4–10−6 has the unphysical

consequence of the viscous dissipation being at least as high as the Ohmic dissipation, the

advantage derived in terms of reproducing the MAC force balance in the energy-containing scales

is crucial in the understanding of wave motions in both dipole-dominated and reversing regimes.

The present study analyses polarity transitions in strongly driven, low-inertia dynamos.

In §2, we consider the evolution of a buoyancy disturbance in an unstably stratified rotating

fluid subject to a magnetic field. In Cartesian geometry, the axes parallel to gravity, rotation and

the magnetic field are chosen to be orthogonal to one another, which is a configuration relevant

to planetary cores (Loper et al. 2003). At times much shorter than the time scale for exponential

increase of the perturbation, the relative intensities of the fast and slow MAC wave motions

generated by the perturbation are studied. Apart from the dipole-dominated regime given by

|ωC| > |ωM| > |ωA| > |ωη |, the regime thought to be relevant to polarity transitions, |ωC| >
|ωM| ∼ |ωA|> |ωη |, is analysed. The linear perturbation analysis serves as the basis for the study

of the role of wave motions in inertia-free polarity transitions in nonlinear dynamo models, given

in §3. Here, we find that the formation of the axial dipole from a chaotic multipolar state and the

collapse of the axial dipole into a polarity-reversing state are dynamically similar phenomena,

in that they both occur at |ωA/ωM| ∼ 1. While dipole formation requires the excitation of slow
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Figure 1: The initial state of a density perturbation ρ ′ that evolves in an unstably stratified rotating

fluid subject to a uniform magnetic field.

MAC waves as a dynamo evolves from a small seed magnetic field, polarity reversals occur when

the slow waves are suppressed in a strongly driven dynamo. The self-similarity of the dipole–

multipole transition in the inertia-free regime places a constraint on the Rayleigh number for

reversals. In §4, we discuss the implications of our results for planetary cores and future work.

2. Evolution of a density disturbance under rapid rotation and a magnetic field

2.1. Problem set-up and governing equations

A localized density disturbance ρ ′ that occurs in an unstably stratified rotating fluid layer

threaded by a uniform magnetic field is considered. Since ρ ′ is related to a temperature pertur-

bation Θ by ρ ′ = −ραΘ , where ρ is the ambient density and α is the coefficient of thermal

expansion, an initial temperature perturbation is chosen in the form

Θ0 =C exp
[

−(x2 + y2 + z2)/δ 2
]

, (2.1)

where C is a constant and δ is the length scale of the perturbation. Figure 1 shows the initial

perturbation which subsequently evolves under gravity ggg =−gêeey, background rotation ΩΩΩ = Ω êeez

and a uniform magnetic field BBB = Bêeex in Cartesian coordinates (x,y,z). In an otherwise quiescent

medium, the initial temperature perturbation (2.1) gives rise to a velocity field uuu, which in turn

interacts with BBB to generate the induced magnetic field bbb. The initial velocity uuu0 and induced

field bbb0 are both zero. In the Boussinesq approximation, the following magnetohydrodynamic

(MHD) equations give the evolution of uuu, bbb and Θ :

∂uuu

∂ t
=− 1

ρ
∇p∗− 2ΩΩΩ × uuu+

1

µρ
(BBB ·∇)bbb− gggαΘ +ν∇2uuu, (2.2)

∂bbb

∂ t
= (BBB ·∇)uuu+η∇2bbb, (2.3)

∂Θ

∂ t
=−γ êeey ·uuu+κ∇2Θ , (2.4)

∇ ·uuu = ∇ ·bbb = 0, (2.5)
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where ν is the kinematic viscosity, κ is the thermal diffusivity, η is the magnetic diffusivity, µ is

the magnetic permeability, ΩΩΩ = Ω êeez, p∗ = p− (ρ/2)|ΩΩΩ × xxx|2 + bbb2/2µ and γ = ∂T0/∂y < 0 is

the mean temperature gradient in the unstably stratified fluid.

2.2. Solutions for the velocity field

Taking the curl of equations (2.2) and the (2.3) and eliminating the electric current density

between them, we obtain for the velocity field,

[(

∂

∂ t
−ν∇2

)(

∂

∂ t
−η∇2

)

−V 2
M

∂ 2

∂x2

]2

(−∇2uuu)

= 4Ω 2

(

∂

∂ t
−η∇2

)2 ∂ 2uuu

∂ z2
− 2Ωα

∂

∂ z

(

∂

∂ t
−η∇2

)2

(∇×Θggg)

−α

(

∂

∂ t
−η∇2

)[(

∂

∂ t
−ν∇2

)(

∂

∂ t
−η∇2

)

−V 2
M

∂ 2

∂x2

]

(∇×∇×Θggg),

(2.6)

where VM = B/
√

µρ is the Alfvén velocity. The assumption of an unbounded domain facilitates

the use of Fourier transforms along each coordinate direction,

F (A) = Â =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ae−ikkk·xxx dxdydz, (2.7)

and

F
−1
(

Â
)

= A =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Âeikkk·xxx dkx dky dkz, (2.8)

where kkk = (kx,ky,kz) represents the wave vector such that |kkk|= k =
√

k2
x + k2

y + k2
z . Application

of the Fourier transform (2.7) to the Cartesian components of equation (2.6) gives

[((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)2( ∂

∂ t
+ωκ

)

+ω2
C

(

∂

∂ t
+ωη

)2( ∂

∂ t
+ωκ

)]

ûx

=

[

−ωCω2
A

kzk

k2
x + k2

z

(

∂

∂ t
+ωη

)2

+ω2
A

kxky

k2
x + k2

z

(

∂

∂ t
+ωη

)((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)]

ûy,

(2.9)

[((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)2( ∂

∂ t
+ωκ

)

+ω2
C

(

∂

∂ t
+ωη

)2( ∂

∂ t
+ωκ

)

+ω2
A

(

∂

∂ t
+ωη

)((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)]

ûy = 0,

(2.10)

[((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)2( ∂

∂ t
+ωκ

)

+ω2
C

(

∂

∂ t
+ωη

)2( ∂

∂ t
+ωκ

)]

ûz

=

[

ωCω2
A

kxk

k2
x + k2

z

(

∂

∂ t
+ωη

)2

+ω2
A

kykz

k2
z + k2

x

(

∂

∂ t
+ωη

)((

∂

∂ t
+ων

)(

∂

∂ t
+ωη

)

+ω2
M

)]

ûy,

(2.11)

where we have combined the transformed temperature equation (2.4) with the transform of (2.6).

In equations (2.9)–(2.11),

ω2
C = 4Ω 2k2

z/k2, ω2
A = gαγ

(

k2
x + k2

z

)

/k2, ω2
M =V 2

Mk2
x , (2.12)
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represent the squares of the frequencies of linear inertial, buoyancy and Alfvén waves respec-

tively (Braginsky 1967; Busse et al. 2007). In an unstably stratified medium, wherein ω2
A < 0,

|ωA| is a measure of the strength of buoyancy. As the present study focuses on a system where

the viscous and thermal diffusion are much smaller than magnetic diffusion, the frequencies

ων = νk2 and ωκ = κk2 in (2.9)–(2.11) are small compared ωη = ηk2. In this limit, the solution

of the form ûy ∼ eiλ t for the homogeneous equation (2.10) gives the following quintic equation

in λ :

λ 5 − 2iωηλ 4 − (ω2
A +ω2

C +ω2
η + 2ω2

M)λ 3 + 2iωη(ω
2
A +ω2

C +ω2
M)λ 2

+(ω2
Aω2

η +ω2
Cω2

η +ω2
Aω2

M +ω4
M)λ − iω2

Aωηω2
M = 0,

(2.13)

the approximate roots of which were discussed in Sreenivasan & Maurya (2021) for known

relative orders of magnitudes of ωM , ωA, ωC and ωη . In the solution for (2.10),

ûy =
5

∑
m=1

Dmeiλmt , (2.14)

the coefficients Dm are determined using the initial conditions for ûy and its time derivatives

(§2.3). Of the five terms in the expansion on the right-hand side of (2.14), two terms represent

oppositely travelling fast MAC waves, two other terms represent oppositely travelling slow MAC

waves, and the fifth term represents the overall growth of the velocity perturbation.

By substituting (2.14) in (2.9) and (2.11), the following solutions for (2.9) and (2.11) are

obtained:

ûx = ûH
x + ûP

x =
5

∑
m=1

Ameiλ H
m t +

5

∑
m=1

Mmeiλ P
mt , (2.15)

ûz = ûH
z + ûP

z =
5

∑
m=1

Cmeiλ H
m t +

5

∑
m=1

Nmeiλ P
mt (2.16)

In (2.15) and (2.16), ûH
x and ûH

z are the homogeneous solutions of (2.9) and (2.11) respectively,

ûP
x and ûP

z are the particular solutions, λ P
m are the roots of (2.13) and λ H

m are the roots of (2.13)

with ωA = 0,

λ H
1 =

1

2

(

ωC + iωη +
√

ω2
C − 2iωCωη −ω2

η + 4ω2
M

)

,

λ H
2 =

1

2

(

−ωC + iωη −
√

ω2
C + 2iωCωη −ω2

η + 4ω2
M

)

,

λ H
3 =

1

2

(

ωC + iωη −
√

ω2
C − 2iωCωη −ω2

η + 4ω2
M

)

,

λ H
4 =

1

2

(

−ωC + iωη +
√

ω2
C + 2iωCωη −ω2

η + 4ω2
M

)

,

λ H
5 = 0,

(2.17)

which give the frequencies of the fast and slow Magneto-Coriolis (MC) waves in the absence of

buoyancy (Sreenivasan & Narasimhan 2017). The coefficients Am, Cm, Mm and Nm in (2.15) and

(2.16) are evaluated as in §2.3 below.

The solutions for the induced magnetic field transforms b̂x, b̂y and b̂z are obtained following a

similar approach.
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2.3. Evaluation of spectral coefficients

From (2.14), the initial conditions for ûy and its time derivatives are given by

in
5

∑
m=1

Dmλ n
m =

(

∂ nûy

∂ tn

)

t=0

= an+1, n = 0,1,2,3,4. (2.18)

Algebraic simplifications give the right-hand sides of (2.18) in the limit of ν = κ = 0, as follows:

a1 = ûy|t=0 = 0,

a2 =
∂ ûy

∂ t
|t=0 = αg

(

k2
z + k2

x

k2

)

Θ̂0,

a3 =
∂ 2ûy

∂ t2
|t=0 = 0,

a4 =
∂ 3ûy

∂ t3
|t=0 =−(ω2

M +ω2
C +ω2

A) a2,

a5 =
∂ 4ûy

∂ t4
|t=0 = ω2

Mωη a2.

(2.19)

The coefficients Dm may now be obtained using the roots of equation (2.13). For example, we

obtain,

D1 =
a5 − ia4(λ2 +λ3 +λ4 +λ5)+ ia2(λ2λ4λ5 +λ3λ4λ5 +λ2λ3λ4 +λ2λ3λ5)

(λ1 −λ2)(λ1 −λ3)(λ1 −λ4)(λ1 −λ5)
, (2.20)

D3 =
a5 − ia4(λ1 +λ2 +λ4 +λ5)+ ia2(λ1λ4λ5 +λ2λ4λ5 +λ1λ2λ4 +λ1λ2λ5)

(λ3 −λ1)(λ3 −λ2)(λ3 −λ4)(λ3 −λ5)
, (2.21)

for the forward-travelling fast and slow wave solutions respectively. The coefficients Am and Cm

are determined in a similar way. The coefficients Mm and Nm in equations (2.15) and (2.16) are

obtained using the method of undetermined coefficients, as follows:

Mm =
Dm

Tm

[

−ωCω2
A

(

kkz

k2
x + k2

z

)

(

−(λ P
m)

2 +ω2
η + 2iωηλ P

m

)

+ω2
A

kxky

k2
x + k2

z

(

−i(λ P
m)

3 − 2ωη(λ
P
m)

2 + i(ω2
η +ω2

M)λ P
m +ω2

Mωη

)

]

,

(2.22)

and

Nm =
Dm

Tm

[

ωCω2
A

(

kkx

k2
x + k2

z

)

(

−(λ P
m)

2 +ω2
η + 2iωηλ P

m

)

+ω2
A

kzky

k2
x + k2

z

(

−i(λ P)3 − 2ωη(λ
P
m)

2 + i(ω2
η +ω2

M)λ P
m +ω2

Mωη

)

]

,

(2.23)

with

Tm = i(λ P
m)

5 + 2(λ P
m)

4ωη − i(λ P
m)

3(ω2
C +ω2

η + 2ω2
M)− 2ωη(λ

P
m)

2(2ω2
C +ω2

M)

+iλ P
m(ω

2
Cω2

η +ω4
M), m = 1,2...5.

(2.24)

2.4. Fast and slow MAC waves in unstable stratification

The solution of the initial value problem gives the velocity and induced magnetic fields at

discrete points in time. The analysis of the solutions is limited to times much shorter than the

time scale for the exponential increase of the perturbations. When the buoyancy force is small

compared with the Lorentz force (|ωA/ωM| ≪ 1), the parameter regime is determined by the
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Figure 2: Evolution of the kinetic helicity on the x-z plane at y = 0 with time (measured in units

of the magnetic diffusion time tη ) for Le = 0.03 and Eη = 2× 10−5. The snapshots are at (a)

t/tη = 1× 10−4, (b) t/tη = 2.5× 10−3 and (c) t/tη = 1× 10−2. The ratio |ωA/ωM| = 0.05 at

times after the formation of the waves.

Lehnert number Le and the magnetic Ekman number Eη ,

Le =
VM

2Ωδ
, Eη =

η

2Ωδ 2
, (2.25a,b)

both based on the length scale δ of the initial buoyancy perturbation (2.1).

Figure 2 shows the evolution of the kinetic helicity uuu · ζζζ at y = 0. The real-space fields are

obtained from the transforms ûuu and ζ̂ζζ via the inverse Fourier transform (2.8). Here, a truncation

value of ±10/δ is used for the three wavenumbers in the integrals since the initial wavenumber

k0 =
√

3/δ . Apart from the spatial segregation of oppositely signed helicity between the two

halves about the mid-plane z = 0 (e.g. Ranjan et al. 2020), the evolution of blobs into columnar

structures through the propagation of damped waves is evident.

As an important aim of this study is to understand the role of MAC waves in the dipolar and

multipolar dynamo regimes, we may separate the fast and slow MAC wave parts of the general

solution, which is a linear superposition of the two wave solutions. For example,

ûx, f = M1eiλ P
1 t +M2eiλ P

2 t +A1eiλ H
1 t +A2eiλ H

2 t ,

ûy, f = D1eiλ1t +D2eiλ2t ,

ûz, f = N1eiλ P
1 t +N2eiλ P

2 t +C1eiλ H
1 t +C2eiλ H

2 t ,

(2.26)

and

ûx,s = M3eiλ P
3 t +M4eiλ P

4 t +A3eiλ H
3 t +A4eiλ H

4 t ,

ûy,s = D3eiλ3t +D4eiλ4t ,

ûz,s = N3eiλ P
3 t +N4eiλ P

4 t +C3eiλ H
3 t +C4eiλ H

4 t ,

(2.27)

where the subscripts f and s in the left-hand sides of (2.26) and (2.27) denote the fast and slow

wave parts of the solution.

Figure 3(a) shows the variation of fundamental frequencies with Le. The range of |ωM/ωC|
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Figure 3: (a) Variation of absolute values of frequencies with Le. (b) Variation of the total kinetic

helicity in the region z < 0 with |ωM/ωC|. The range of |ωM/ωC| in (b) corresponds to the range

of Le in (a). All calculations are performed for Eη = 2× 10−5. The slow wave frequency, ωs

takes non-zero values for Le > 2× 10−3, when |ωM|> |ωA|.

on the horizontal axis of figure 3(b) corresponds to the range of Le in figure 3(a). The values of

|ωM/ωC| are systematically higher than that of Le, which is essentially the initial value of this

ratio. The enhanced instantaneous value of |ωM/ωC| is due to the anisotropy of the columnar

flow (see Varma & Sreenivasan 2022), and would not be evident if ΩΩΩ were aligned with BBB

(Sreenivasan & Maurya 2021). For Eη = 2× 10−5, all calculations for Le > 2× 10−3 satisfy

the inequality |ωC| > |ωM| > |ωA| > |ωη |, thought to be essential for axial dipole formation in

convective dynamos. Figure 3(b) shows the variation of the dimensionless helicity h∗ of the fast

and slow MAC waves, obtained by summing the helicity at all points in (x,z) for z < 0 and y = 0

and then normalizing this value by the nonmagnetic helicity. For Le > 2× 10−3 (|ωM/ωC| >
0.045), the slow wave helicity increases dramatically, and for Le ∼ 10−2 (|ωM/ωC| ∼ 0.1), the

slow wave helicity is greater than the fast wave helicity. This result is consistent the dominance

of the slow waves over the fast waves for |ωM/ωC| ∼ 0.1 in the energy-containing scales in

numerical dynamo models (Varma & Sreenivasan 2022).

In figure 4, the contours of the fast and slow MAC wave helicities are shown at two times for

|ωM/ωC|= 0.13, which lies in the region of slow wave dominance in figure 3(b). The fast waves

split in two and propagate rapidly along z. The slow waves do not propagate as far as the fast

waves at the same time due to their lower group velocity. Yet, as indicated by the colour bars,

the slow waves are markedly more intense than the fast waves. Both fast and slow wave columns

propagate along x at the Alfvén velocity (see figure 5 below).

The effect of progressively increasing the buoyant forcing on the fast and slow waves is

examined in the following section. It is anticipated that strong forcing would selectively attenuate

the slow waves, with implications for polarity transitions in dynamos.
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Figure 4: Helicity on the section y = 0 of fast (a, b) and slow (c,d) MAC waves at two times,

t/tη = 2.5× 10−3 (left panels) and t/tη = 1× 10−2 (right panels). Here, Eη = 2× 10−5 and

Le = 0.03 (|ωM/ωC|= 0.13).

2.5. Effect of progressively increasing buoyancy

For the regime given by |ωC| ≫ |ωM| ≫ |ωA| ≫ |ωη |, the roots of the homogeneous equation

(2.13) are approximated by (Sreenivasan & Maurya 2021)

λ1,2 ≈±
(

ωC +
ω2

M

ωC

)

+ i
ω2

Mωη

ω2
C

, (2.28)

λ3,4 ≈±
(

ω2
M

ωC

+
ω2

A

2ωC

)

+ iωη

(

1− ω2
A

2ω2
M

)

, (2.29)

λ5 ≈ i
ω2

Aωη

ω2
M

. (2.30)
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As |ωA| increases relative to |ωM|, the fast MAC waves, given by frequencies λ1,2, are unaf-

fected except by weak magnetic diffusion. However, the slow waves, whose real frequencies are

approximated by

Re(λ3,4)≈±
(

ω2
M

ωC

+
ω2

A

2ωC

)

≈±ω2
M

ωC

(

1+
ω2

A

ω2
M

)1/2

(2.31)

for ωC|≫ |ωM|, |ωA| (Braginsky 1967), would be significantly attenuated in an unstably stratified

fluid as |ωA| nears |ωM|. We see below that the decrease of the slow wave frequency translates

into the marked decrease of the slow wave helicity relative to the fast wave helicity.

Figure 5(a) indicates that both fast and slow MAC waves propagate along the mean-field

direction x such that x/δ = t/ta, where ta is the Alfvén wave travel time. For small |ωA/ωM|,
the helicity of slow wave motions is greater than that of fast waves, but as |ωA/ωM| approaches

unity, the slow wave helicity weakens considerably and falls below that of the fast wave. The

effect of increasing buoyancy forcing on the fast and slow wave helicity is shown graphically in

figure 6. The fast waves are practically unaffected by the strength of forcing as their intensity and

z propagation rate are nearly invariant for |ωA/ωM| in the range 0.1–1 (figure 6(a–c)). The slow

wave helicity, on the other hand, is substantially attenuated as |ωA/ωM| increases in the same

range (figure 6(d–f)). For |ωA/ωM| ≈ 1, a state is reached where the slow wave helicity is nearly

zero. The induced magnetic field bz also weakens considerably with increasing |ωA/ωM| (figure

6(g–i)), which indicates that only the slow wave helicity has a direct bearing on field generation.

Figure 5(b) shows the normalized slow wave helicity against a ‘local’ Rayleigh number based

on the length scale of the initial perturbation,

Raℓ =
gα|γ|δ 2

2Ωη
(2.32)

as well as |ωA/ωM|. Evidently, the forcing needed to suppress the slow waves increases with

Le, although the total suppression of these waves occurs universally at |ωA/ωM| ≈ 1. This result

prompts us to look at the condition for vanishing slow wave helicity through a relation between

Raℓ and a parameter Λ defined by

Λ =

(

ω2
M

ωCωη

)

0

∼ V 2
M

2Ωη
, (2.33)

which measures the initial ratio of the slow MC wave frequency to the magnetic diffusion

frequency. Figure 7 shows that the same linear relation between Raℓ and Λ , whose values are

tabulated in table 1, holds for any Eη . Both Raℓ and Λ are measurable in dynamo models, the

latter being of the same order of magnitude as the Elsasser number – the square of the scaled

magnetic field – in many models. In low-inertia dynamos where the nonlinear inertial force is

small compared with the Coriolis force, we may expect self-similarity of Raℓ with respect to

Λ , as suggested by figure 7. If the state of vanishing slow wave helicity is taken as a proxy for

polarity transitions, then the value of Raℓ in this state can provide a useful constraint on the

Rayleigh number that admits magnetic reversals. This idea is explored further in §3.

3. Nonlinear dynamo simulations

We consider a convection-driven dynamo operating in a spherical shell, the boundaries of

which correspond to the inner core boundary (ICB) and the core–mantle boundary (CMB). The

ratio of inner to outer radius is 0.35. Fluid motion is driven by thermal buoyancy, although our

formulation can also study thermochemical buoyancy using the codensity formulation (Bragin-

sky & Roberts 1995). The other body forces acting on the fluid are the electromagnetic Lorentz
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Figure 5: (a) Variation of the fast wave (dashed line) and slow wave (solid line) helicity for z < 0,

normalized by the non-magnetic helicity, with x/δ and |ωA/ωM| at different times (measured in

units of the Alfvén wave travel time ta). Here, Eη = 2× 10−5 and Le = 0.03. (b) Variation of

the normalized slow wave helicity with the local Rayleigh number Raℓ (defined in (2.32)) and

|ωA/ωM| for different Le.

Eη = 6×10−7 Eη = 6×10−6 Eη = 2×10−5

Le Λ Raℓ Le Λ Raℓ Le Λ Raℓ
×104 ×104 ×104

0.0071 47 0.0380 0.0120 13.67 0.0097 0.0200 11.87 0.0039
0.0111 118 0.1227 0.0366 127.49 0.1383 0.0601 107.33 0.1258
0.0139 185 0.2029 0.0509 246.04 0.2669 0.0901 240.68 0.2538
0.0162 253 0.2832 0.0620 365.39 0.3956 0.1063 335.34 0.3787
0.0201 338 0.4437 0.0704 470.60 0.5242 0.1201 428.41 0.5036
0.0233 523 0.6042 0.0779 575.81 0.6528 0.1344 536.45 0.6286
0.0262 658 0.7647 0.0846 680.00 0.7814 0.1472 653.35 0.7535
0.0287 793 0.9252 0.0908 782.69 0.9100 0.1589 749.42 0.8784
0.0311 928 1.0862 0.0966 885.38 1.0386 0.1698 858.50 1.0035
0.0322 996 1.1335 0.1020 988.07 1.1672 0.1800 961.57 1.1283

Table 1: Values of Raℓ, defined in (2.32), at different Λ , defined in (2.33), for suppression of slow

MAC waves in the linear magnetoconvection calculations. The dimensionless parameters Le and

Eη are defined in (2.25a,b).

force and the Coriolis force. Lengths are scaled by the thickness of the spherical shell L and time

is scaled by magnetic diffusion time L2/η , where η is magnetic diffusivity. The velocity uuu and

magnetic field BBB are scaled by η/L and (2Ωρµη)1/2, respectively, where Ω is the rotation rate,

ρ is the fluid density and µ is the magnetic permeability. The temperature is scaled by β L, where

β is the radial temperature gradient at the outer boundary. In the Boussinesq approximation, the

non-dimensional MHD equations for the velocity, magnetic field and temperature are given by,
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Figure 6: Fast MAC wave helicity (a–c), slow MAC wave helicity (d–f) and z-component of

the induced magnetic field, bz (g–i) for |ωA/ωM| = 0.1, 0.6, 0.95 (left to right). The plots are

generated at time t/tη = 0.01 for the parameters Le = 0.03 and Eη = 2× 10−5.
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Figure 7: Variation of the local Rayleigh number Raℓ, defined in (2.32), shown against Λ , defined

in (2.33), for the state of approximately zero slow MAC wave helicity. Three values of Eη are

considered – the diamonds represent Eη = 6×10−7, circles represent Eη = 6×10−6 and triangles

represent Eη = 2× 10−5.

EPm−1
(∂uuu

∂ t
+(∇× uuu)× uuu

)

+ ẑzz× uuu =−∇p⋆+RaPmPr−1 T rrr

+(∇×BBB)×BBB+E∇2uuu, (3.1)

∂BBB

∂ t
= ∇× (uuu×BBB)+∇2BBB, (3.2)

∂T

∂ t
+(uuu ·∇)T = PmPr−1 ∇2T, (3.3)

∇ ·uuu = ∇ ·BBB = 0, (3.4)

The modified pressure p∗ in equation (3.1) is given by p+E Pm−1 |uuu|2. The dimensionless

parameters in the above equations are the Ekman number E = ν/2ΩL2, the Prandtl number, Pr =
ν/κ , the magnetic Prandtl number, Pm = ν/η and the modified Rayleigh number gαβ L2/2Ωκ .

Here, g is the gravitational acceleration, ν is the kinematic viscosity, κ is the thermal diffusivity

and α is the coefficient of thermal expansion.

The basic-state temperature profile represents a basal heating given by T0(r) = riro/r, where

ri and ro are the inner and outer radii of the spherical shell. The velocity and magnetic fields

satisfy the no-slip and electrically insulating conditions respectively at the two boundaries. The

inner boundary is isothermal while the outer boundary has constant heat flux. The calculations

are performed by a pseudospectral code that uses spherical harmonic expansions in the angular

coordinates (θ ,φ) and finite differences in radius r (Willis et al. 2007).

As in earlier studies (Sreenivasan & Jones 2011; Varma & Sreenivasan 2022), the dynamo

simulations begin from a dipole-dominated seed magnetic field of volume-averaged intensity

B̄ = 0.01. The main output parameters of the dynamo simulations, given in table 2, are time-

averaged values in the saturated state of the dynamo. For three values of the Ekman number E ,

a series of simulations at progressively increasing Rayleigh number Ra are performed, spanning

the dipole-dominated regime up to the onset of polarity reversals. The mean spherical harmonic

degrees for convection and energy injection are defined by

lc =
Σ l Ek(l)

Σ Ek(l)
; lE =

Σ l ET (l)

Σ ET (l)
, (3.5)
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Figure 8: Dipole colatitude versus magnetic diffusion time at (a) Ra = 4750, (b) Ra = 4875 and

(c) Ra = 5000. The other parameters are E = 3× 10−4,Pm = Pr = 20.

(a) (b)

Figure 9: The contours of the radial magnetic field for Ra = 5000 at the outer boundary for

magnetic diffusion times (a) td = 1.24 and (b) td = 1.9 The other dynamo parameters are E =
3× 10−4,Pm = Pr = 20.

where Ek(l) is the kinetic energy spectrum and ET (l) is the spectrum obtained from the product

of the transform of urT and its conjugate. For each E , the value of Pm = Pr is chosen such

that the local Rossby number Roℓ, which gives the ratio of the inertial to Coriolis forces on

the characteristic length scale of convection (Christensen & Aubert 2006) is < 0.1 (table 2).

Therefore, our dynamo simulations lie in the rotationally dominant, or low-inertia, regime.

Figure 8 shows the magnetic colatitude of the dipole field, θ at the upper boundary obtained

from spherical harmonic coefficients, as follows:

cosθ = g0
1/|mmm|, mmm = (g0

1,g
1
1,h

1
1), (3.6)

and

g0
1 = P

0
1 , g1

1 =−2Re(P1
1 ), h1

1 = 2Im(P1
1 ), (3.7)

where P is the poloidal part of the magnetic field. For E = 3× 10−4 and Pr = Pm =20, the

dipole axis flips by 180◦ at Ra = 5000 (figure 8(c)), as confirmed by the contour plots of the

radial magnetic field in figure 9 (a) & (b).

As in earlier studies (Varma & Sreenivasan 2022), the range of spherical harmonic degrees

l 6 lE is of particular interest since kinetic helicity is known to be generated in the nonlinear

dynamo in this range of energy-containing scales. A relative helicity is defined that measures the

augmentation of lower-hemisphere helicity in the nonlinear dynamo (magnetic) run relative to

that in the equivalent nonmagnetic simulation.

Hr =
hm − hnm

hnm

, (3.8)

for l 6 lE . Here, the subscripts m and nm denote the magnetic (dynamo) and nonmagnetic values

respectively. The variation of Hr with time in dynamos that evolve from a small seed field is
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Figure 10: Relative helicity, Hr, as defined in (3.8), in two dynamo simulations starting from a

seed magnetic field. The evolution of Hr is shown for two runs, (a) Ra= 3000 (dipole-dominated)

and (b) Ra = 21000 (polarity-reversing). The superposed red line is a polynomial fit showing the

trend of the evolution. The dotted vertical line in (a) marks the formation of stable dipole field in

the run. The other dynamo parameters are E = 6× 10−5, Pm = Pr = 5.

given in figure 10. While there is an approximately two-fold increase in helicity for the dipole-

dominated run, there is no noticeable increase in helicity in the polarity-reversing run over the

nonmagnetic state. This result prompts us to examine the nature of wave motions in the dipolar

and reversing runs.

3.1. Attenuation of slow MAC waves in polarity-reversing dynamos

Isolated density disturbances in a rotating stratified fluid layer excite MAC waves whose

frequencies depend on the fundamental frequencies ωM , ωA and ωC, representing Alfvén waves,

internal gravity waves and linear inertial waves respectively. In unstable stratification that drives

planetary core convection, ω2
A < 0, where |ωA| is simply a measure of the strength of buoyancy.

Since the dimensional frequencies ω2
M, −ω2

A and ω2
C in the dynamo are given by (Varma &

Sreenivasan 2022)

ω2
M =

(BBB · kkk)2

µρ
, −ω2

A = gαβ

(

k2
z + k2

φ

k2

)

, ω2
C =

4(ΩΩΩ · kkk)2

k2
, (3.9)

and scaling the frequencies by η/L2, we obtain in dimensionless units,

ω2
M =

Pm

E
(BBB · kkk)2, −ω2

A =
Pm2Ra

Pr E

(

kz
2 + k2

φ

k2

)

, ω2
C =

Pm2

E2

k2
z

k2
, (3.10)

where ks, kφ and kz are the radial, azimuthal and axial wavenumbers in cylindrical coordinates

(s,φ ,z), kφ = m/s, where m is the spherical harmonic order, and k2 = k2
s + k2

φ + k2
z . Here, ωA is

evaluated on the equatorial plane where the buoyancy force is maximum. The magnetic (Alfvén)

wave frequency ωM is based on the three components of the measured magnetic field at the

peak-field location. The wavenumber kφ is evaluated at s = 1, approximately mid-radius of the

spherical shell.

For the inequality |ωC|> |ωM|> |ωA|, the fast ( f ) and slow (s) MAC waves are given by the
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following frequencies in the diffusionless limit (Busse et al. 2007; Salhi et al. 2017):

ω f =± 1√
2

√

ω2
A +ω2

C + 2ω2
M +

√

ω4
A + 2ω2

Aω2
C + 4ω2

Mω2
C +ω4

C, (3.11)

ωs =± 1√
2

√

ω2
A +ω2

C + 2ω2
M −

√

ω4
A + 2ω2

Aω2
C + 4ω2

Mω2
C +ω4

C. (3.12)

While the fast waves are linear inertial waves weakly modified by the magnetic field and

buoyancy, the slow waves are magnetostrophic.

In figure 11, the magnitudes of the fundamental frequencies are shown as a function of the

spherical harmonic order m in the saturated state of the dynamo run at E = 6 × 10−5, and

Pr = Pm = 5. The frequencies are computed from (3.10) using the mean values of the s and

z wavenumbers. For example, real space integration over (s,φ) gives the kinetic energy as

a function of z, the Fourier transform of which gives the one-dimensional spectrum û2(kz).
Subsequently, we obtain

k̄z =
Σkz û2(kz)

Σ û2(kz)
. (3.13)

A similar approach gives k̄s. The computed frequencies in figure 11(a)–(c), shown for dynamos

with Ra = 6000–18000, satisfy the inequality |ωC| > |ωM| > |ωA| in a range of the spherical

harmonic order m. The dashed vertical lines show the value of m below which the helicity in the

nonlinear dynamo is greater than that in the nonmagnetic run at the same parameters. Evidently,

the scales of helicity generation in the nonlinear dynamo overlaps with the scales where the slow

MAC waves are generated. The range of m over which the above frequency inequality holds

narrows down with Ra, and for the polarity-reversing dynamo with Ra = 21000, this inequality

does not exist at any m (figure 11(d)).

The spectral distribution of the power supplied to the poloidal part of the axial dipole field BP
10,

given by (e.g. Buffett & Bloxham 2002)

P10 =
∫

V
BBBP

10 · [∇× (uuu×BBB)m]dV, (3.14)

also given in figure 11 (a)–(d), suggests that the axial dipole is predominantly generated in the

scales where the MAC waves are generated. In the reversing dynamo without the MAC wave

window, the power supplied to the dipole is small.

In figure 12, the dynamo frequencies are computed from (3.10) using the mean values of the s,

φ and z wavenumbers in the saturated state of the dynamo in the range l 6 lE , which represents the

energy-containing scales. The mean spherical harmonic order m̄ is evaluated through a weighted

average as in (3.13), but over the range of m within l 6 lE . As the field increases from a small seed

value in the dipolar dynamo run at Ra = 3000 (figure 12(a)), slow MAC waves of frequency ωs

are thought to be first excited when |ωM|> |ωA| (see Varma & Sreenivasan 2022). The formation

of the axial dipole from a chaotic field, marked by the dotted vertical line, follows slow wave

excitation. In the run at Ra = 21000 where polarity reversals occur, |ωM| remains lower than

|ωA| throughout (figure 12(b)), so the slow waves are never excited. From the variation of the

frequencies with increasing strength of forcing, given in figure 12(c), we note that |ωM| falls

below |ωA| at Ra ≈ 21000, which indicates that polarity reversals would indeed onset in the

regime |ωM| ≈ |ωA| when slow MAC waves disappear. The volume-averaged mean square value

of the axial dipole field is much smaller in the reversing regime of Ra = 21000 than in the stable

dipole regime of Ra = 3000 (figure 12(d)), which suggests that the slow MAC waves have an

important role in the formation of the axial dipole.

Figure 13 shows the measurement of wave motion in the saturated state of dynamos at E =
6× 10−5 and Pr = Pm = 5 and three values of Ra spanning the dipole-dominated regime and
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Figure 11: The upper panels of (a)–(d) show the absolute values of wave frequencies plotted

for the saturated state of the dynamo. The dashed vertical lines show the upper boundary of

the range of wavenumbers m for which the the helicity of the dynamo run is greater than that

of the equivalent nonmagnetic run. The lower panels of (a)–(d) show the spectral distribution

of the power supplied to the axial dipole, defined in (3.14). The modified Rayleigh number Ra

of the model is given above each panel. The other dynamo parameters are E = 6× 10−5, and

Pr = Pm = 5.
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Ra Ra/Rac Nr lmax Rm Roℓ lE lC m̄ k̄s k̄z B2
rms Raℓ Λ

E = 3×10−4,Pm = Pr = 20
400 18.2 72 64 56 0.002 11 8 3.52 2.92 2.87 0.59 1274 24
800 36.4 72 64 75 0.003 11 9 3.91 3.65 2.81 1.11 2066 48
1600 72.7 72 72 106 0.005 13 10 4.12 3.32 2.43 1.12 3721 64
2000 90.9 72 72 119 0.005 14 11 4.34 3.01 2.97 0.98 4192 87
2400 109.1 72 96 130 0.006 14 11 4.26 3.14 2.66 0.87 5221 114
3000 136.4 72 96 148 0.007 15 11 4.31 3.52 2.24 0.58 6376 128
4000 181.8 72 96 171 0.009 15 11 4.19 3.25 2.63 0.49 8995 160
4500 204.6 132 128 192 0.009 15 11 4.34 2.87 2.54 0.47 9432 167
4750 215.9 132 128 199 0.010 15 11 4.29 3.43 2.46 0.46 10189 179
4875 221.6 132 132 203 0.010 15 11 4.16 3.26 2.19 0.46 11121 185
4950 225.0 132 132 105 0.011 15 11 4.12 3.11 2.42 0.32 11513 195
5000 227.3 132 132 210 0.011 15 11 4.02 3.35 2.31 0.003 12215 210⋆

E = 6×10−5 ,Pm = Pr = 5
300 10.3 88 96 67 0.002 10 9 3.89 3.81 3.36 0.52 783 26
400 13.8 88 96 74 0.002 11 9 3.78 4.21 3.25 0.74 1105 29
1000 34.5 128 120 98 0.004 16 12 4.69 3.86 3.31 2.48 1795 39
3000 103.5 160 160 169 0.009 20 15 5.23 4.75 4.29 3.26 4330 96
6000 206.9 160 160 243 0.014 22 16 5.92 5.51 4.13 3.28 6759 126
8000 275.9 160 180 288 0.020 23 17 6.14 5.27 3.62 3.29 8377 149
12000 413.8 160 180 365 0.024 24 17 7.13 4.68 3.34 3.27 9319 160
14000 482.8 160 180 402 0.026 25 18 7.54 5.11 2.97 3.18 9722 185
18000 620.7 160 180 456 0.032 25 19 7.78 4.84 3.30 3.04 11740 200
20000 689.7 160 180 505 0.035 25 19 8.12 4.64 3.46 2.55 11975 215
21000 724.1 160 180 549 0.039 25 19 8.05 4.22 3.38 0.62 12793 227⋆

E = 1.2×10−5 ,Pm = Pr = 1
300 10.3 90 96 78 0.004 15 15 4.87 3.87 2.86 0.31 499 17
700 24.1 90 96 102 0.005 19 17 5.02 4.25 3.02 2.11 1097 18
1000 34.5 132 144 112 0.006 21 20 5.12 4.58 2.89 2.46 1506 36
2500 86.2 168 160 174 0.011 26 20 6.54 4.04 2.82 3.59 2308 38
4000 137.9 180 168 224 0.017 28 20 7.94 4.14 3.42 4.01 2505 41
10000 344.8 192 180 384 0.033 33 24 9.13 4.62 3.07 5.04 4736 67
15000 517.2 192 180 500 0.045 34 24 9.87 4.87 2.97 5.35 6079 95
20000 689.7 192 180 573 0.052 35 25 9.93 4.43 3.12 5.46 8007 139
25000 862.1 192 180 655 0.061 36 25 10.01 4.48 2.78 5.84 9850 176
27000 931.0 192 180 698 0.065 36 25 9.96 4.69 2.87 4.87 10745 190
28000 965.5 192 180 775 0.073 36 25 10.05 4.81 2.91 0.82 10944 196⋆

Table 2: Summary of the main input and output parameters in the dynamo simulations considered

in this study. Here, Ra is the modified Rayleigh number, Rac is the modified critical Rayleigh

number for onset of nonmagnetic convection, Nr is the number of radial grid points, lmax is the

maximum spherical harmonic degree, Rm is the magnetic Reynolds number, Roℓ is the local

Rossby number, lC and lE are the mean spherical harmonic degrees of convection and energy

injection respectively (defined in (3.5)), m̄ is the mean spherical harmonic order in the range

l 6 lE , k̄s and k̄z are the mean s and z wavenumbers in the range l 6 lE , Raℓ is the local Rayleigh

number defined in (3.15), B2
rms is the measured mean square value of the field in the saturated

dynamo and Λ is the peak Elsasser number obtained from the square of the measured peak field

at the earliest time of excitation of slow MAC waves in the dynamo run starting from a small seed

field. ∗The last run in each Ekman number series is a polarity-reversing dynamo, for which Λ is

the square of the measured peak field when slow MAC waves cease to exist in the run starting

from the saturated state of the penultimate run in that series (also see §3.2).
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Figure 12: (a) & (b) Absolute values of the measured frequencies ωM , ωA, ωC and ωs plotted

against time (measured in units of the magnetic diffusion time, td). The simulations study the

evolution of the dynamo starting from a small seed magnetic field. The modified Rayleigh

number Ra is shown above each panel. The dotted vertical line in (a) marks the time of formation

of the axial dipole from a multipolar field. (c) Frequencies in the saturated dynamo shown against

Ra. The dashed vertical line here gives the value of Ra at which the slow MAC wave frequency

ωs goes to zero. (d) The Elsasser number of the axial dipole field component, based on its root

mean square value, for Ra = 3000 and Ra = 21000. The dynamo parameters are E = 6× 10−5,

Pm = Pr = 5. The colour codes in (a) are also used in (b) and (c).

reversals. Contours of u̇z at cylindrical radius s = 1 are plotted over small time windows in which

the ambient magnetic field and wavenumbers are approximately constant. These contours show

the propagation paths of the fluctuating z velocity. In line with the discussion so far and Varma &

Sreenivasan (2022), the measurement of axial motions is limited to the energy-containing scales

l 6 lE , with no restriction on the wavenumber. The measured axial group velocity of the waves,

Ug,z – obtained from the slope of the black lines in figure 13 – is compared with the estimated

fast (U f ) and slow (Us) group velocities obtained by taking the derivatives of the respective

frequencies in (3.11) and (3.12) with respect to kz (table 3). The theoretical frequencies ω f and

ωs are estimated using the three components of the magnetic field at the peak-field location

and the mean values of ks, kz and m over the range of energy-containing scales, l 6 lE . In the

dipole-dominated run at Ra = 6000, both fast and slow MAC waves co-exist, although the slow

waves are dominant (shown in two different φ locations in figure 13(a) and (b)). At Ra = 20000,

the increasing occurrence of the fast waves at the same location as the slow waves is noted by

the nearly vertical propagation paths (figure 13(c)). The measured slow wave group velocity at
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Figure 13: Contour plots of ∂uz/∂ t at cylindrical radius s = 1 for l 6 lE and small intervals

of time in the saturated state of three dynamo simulations. The parallel black lines indicate

the predominant direction of travel of the waves and their slope gives the group velocity. The

Rayleigh number Ra of the simulation is given above each panel. The other dynamo parameters

are E = 6× 10−5, Pr = Pm = 5. The estimated group velocity of the fast and slow MAC waves

(U f and Us respectively) and the measured group velocity Ug,z are given in table 3.

Ra = 20000 is greater than that at Ra = 6000, which reflects the larger self-generated field at the

higher Rayleigh number. In the reversing dynamo at Ra = 21000, slow waves are totally absent

while the fast waves are abundant (figure 13(d)).

The dominance of the slow MAC waves in the dipole-dominated dynamo and the fast MAC

waves in the reversing dynamo is further evident in figure 14, where the fast Fourier transform

(FFT) of u̇z is shown. The flow largely consists of waves of frequency ω ∼ ωs in the dipolar

dynamo (figure 14(a)), whereas in the reversing dynamo, waves of much higher frequency ω ∼
ω f are dominant (figure 14(b)).

3.2. Self-similarity of the dipole–multipole transition

In the presence of small but finite magnetic diffusion, the slow MAC waves are known to

disappear in an unstably stratified medium for |ωA/ωM| ≈ 1. The same condition must hold for

the appearance of slow waves in a medium where the magnetic field progressively increases from

a small value. In simulations starting from a small seed field, the earliest time of excitation of

the slow MAC waves is noted from group velocity measurements at closely spaced times during

the growth phase of the dynamo. The peak Elsasser number Λ = B2 at this time is obtained from
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E Ra Fig. ω2
n ω2

C ω2
M −ω2

A ω f ωs U f Us Ug,z

No. (×1010) (×108) (×108) (×108) (×104) (×104)
1 6×10−5 6000 13(a) 1.6 22.27 5.98 3.67 5.48 0.67 7454 368 7072

2 6×10−5 6000 13(b) 1.6 22.27 5.98 3.67 5.48 0.67 7454 368 391

3 6×10−5 20000 – 1.44 18.94 17.72 13.45 6.24 1.39 7029 2124 9784

4 6×10−5 20000 13(c) 1.44 18.94 17.72 13.45 6.24 1.39 7029 2124 1146

5 6×10−5 21000 13(d) 0.53 17.84 13.93 14.05 5.63 0 7214 – 10587

Table 3: Summary of the data for MAC wave measurement in the dynamo models. The sampling

frequency ωn is chosen to ensure that the fast MAC waves are not missed in the measurement of

group velocity. The values of ω2
M , −ω2

A and ω2
C are calculated from (3.10) using the mean values

of m, ks and kz over the range of energy-containing scales, l 6 lE . The measured group velocity in

the z direction (Ug,z) is compared with the estimated fast (U f ) or slow (Us) MAC wave velocity.
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Figure 14: (c) FFT spectrum of ∂uz/∂ t at cylindrical radius s = 1 for the scales l 6 lE . The

spectra are computed at discrete φ points and then averaged azimuthally. The dotted vertical line

in (a) corresponds to ω/ωs = 1 and the solid vertical line in (b) corresponds to ω/ω f = 1, where

ω f and ωs are the estimated fast and slow MAC wave frequencies. In (a), ω⋆
f = ω f /ωs. The

Rayleigh number in the simulation is given above each panel. The other dynamo parameters are

E = 6× 10−5 and Pm = Pr =5.

the three components of the field at the peak-field location, and presented in the last column of

table 2. In each of the three dynamo series considered in this study, the last run is a polarity-

reversing dynamo, for which Λ is the measured peak Elsasser number when slow MAC waves

cease to exist in the run starting from the saturated state of the penultimate run in that series.

Figure 15(a) shows that the variation of Ra with Λ in the three dynamo series is nearly linear.

The Rayleigh number corresponding to reversals (at which slow MAC waves disappear) lies on

this line, indicating that the appearance and disappearance of MAC waves are in dynamically

similar regimes.

Following the analysis in figure 7, where the Rayleigh number based on the length scale of the

buoyant perturbation was studied, we define a local Rayleigh number in the dynamo,

Raℓ =
gαβ

2Ωη

(

2π

m̄

)2

, (3.15)

where m̄ is the mean spherical harmonic order evaluated over m within the energy-containing
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Figure 15: (a) Variation of the modified Rayleigh number Ra with the peak Elsasser number Λ
(square of the peak magnetic field) at both excitation and suppression of slow MAC waves. The

hollow symbols represent the states where slow waves are first excited as the dynamos evolve

from a small seed field; the filled symbols represent the states where slow waves are suppressed

in the polarity-reversing dynamos. The parameters of the three dynamo series and their symbolic

representations are as follows: E = 3×10−4,Pm= Pr = 20 (circles), E = 6×10−5,Pm= Pr = 5

(triangles), E = 1.2×10−5,Pm = Pr = 1 (diamonds). (b) Variation of the local Rayleigh number

Raℓ, defined in (3.15), with Λ . The values of Ra, Raℓ and Λ in the plots are given in table 2. The

sections 1 and 2 marked on the self-similar line are analysed further in figures 16 and 17 below.

scales l 6 lE . The behaviour of Raℓ, which is defined for the scales where the MAC waves are

excited by buoyancy, is self-similar (figure 15(b)). The values of Raℓ at the onset of polarity

reversals, where the slow MAC waves disappear, also lie on the same self-similar branch. While

the conventional Rayleigh numbers Ra at the onset of reversals in the three dynamo series lie

far apart (see the filled symbols in figure 15(a)), the respective local Rayleigh numbers Raℓ are

remarkably close, and ∼ 104 (see the filled symbols in figure 15(b) and table 2). The magnetic

Ekman number based on m̄ in the three dynamo series takes values of Eη ∼ 10−5 for a wide

range of Ra, which indicates an energy-containing length scale ∼ 10 km for Earth (see §1).

The fact that the linear variation of Raℓ with Λ demarcates the boundary between dipolar and

multipolar states is evident by traversing the sections 1 and 2 marked on the Raℓ line from left

to right (figure 15(b)). In practice, this is done by following the evolution of the dynamo from a

small seed field. Figure 16(a) shows the section 1 within dashed vertical lines, where |ωM| crosses

|ωA|. The variation of the dipole colatitude θ , shown in figure 16(b), indicates a multipolar field

until this crossing, and a stable dipole thereafter. While the flow is predominantly made up of fast

MAC waves of frequency ω ∼ ω f before the transition, the slow waves of frequency ω ∼ ωs are

dominant after the transition (figures 16(c) & (d)). The multipole–dipole transitions are further

evident in the contour plots of the radial magnetic field at the outer boundary, given in figure 17

for sections 1 and 2 marked in figure 15(b).

4. Concluding remarks

The present study investigates the dipole–multipole transition in rotating dynamos through

the analysis of MHD wave motions. The limit of small Rossby number, based not only on the

planetary core depth but also on the length scale of core convection, is considered. In this inertia-

free limit, the dynamo polarity depends on the relative magnitudes of ωM and ωA, which in turn

depend on the intensity of the self-generated field and the strength of buoyant forcing in the

unstably stratified fluid layer. While the onset of slow magnetostrophic waves for |ωM| ∼ |ωA| is
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Figure 16: (a) Evolution the dynamo frequencies in a simulation beginning from a small seed

magnetic field at E = 1.2× 10−5, Pm = Pr = 1, Ra = 4000. The two dashed vertical lines at

td = 0.55 and td = 0.66 represent the end points of section 1 marked in figure 15(b) with peak

Elsasser numbers Λ = 32 and 56 respectively. (b) Evolution of the dipole colatitude in the above

simulation. (c) & (d) FFT spectra of ∂uz/∂ t at cylindrical radius s = 1 for the scales l 6 lE at

Λ = 32 and 56 respectively. The spectra are computed at discrete φ points and then averaged

azimuthally. In (d), ω∗
f = ω f /ωs, where ω f and ωs are the estimated fast and slow MAC wave

frequencies.

known to produce the axial dipole from a chaotic multipolar state (see figures 16(b) & 17, as well

as Varma & Sreenivasan (2022)), the annihilation of the slow waves for the same condition leads

to the collapse of the axial dipole in strongly driven dynamos (see figures 12(c) & (d)). Since

the appearance and disappearance of the slow waves are dynamically similar phenomena, the

local Rayleigh number Raℓ representing them fall on the same line that separates the dipolar and

multipolar states. The variation of Raℓ with the Elsasser number Λ is very similar in the linear

magnetoconvection and dynamo models, which is remarkable given that the Alfvén frequency

ωM is determined by the imposed field in the linear model and by the self-generated field in the

dynamo model.

The self-similarity of polarity reversals in the inertia-free regime can place a useful constraint

on the Rayleigh number that admits reversals in the Earth. For Raℓ ∼ 104, the classical Rayleigh

number R = Ra/E ∼ 1017, taking a turbulent viscosity ν ≈ η and a plausible ratio of core depth

to the convective length scale, L/δ ∼ 102. This estimate, however, ignores the effect of double-

diffusive convection, wherein compositional buoyancy is dominant and thermal buoyancy via

secular cooling may contribute to about a fifth of the total forcing (Lister & Buffett 1995).

For a given rotation rate, thermochemical convection increases |ωM| through enhanced field
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Figure 17: Shaded contours of the radial magnetic field at the outer boundary in two dynamo

simulations. (a) and (b): Raℓ = 2505, corresponding to section 1 in figure 15(b), at Λ = 32 and

56 respectively. The dynamo parameters are E = 1.2× 10−5, Ra = 4000, Pm = Pr = 1. (c) and

(d): Raℓ = 11740, corresponding to section 2 in figure 15(b), at Λ = 187 and 216 respectively.

The dynamo parameters are E = 6× 10−5, Ra = 18000, Pm = Pr = 5.

generation, thereby pushing the value of Ra for reversals higher. On the other hand, Earth’s

core is believed to convect in response to large lateral variations in lower-mantle heat flux (e.g.

Olson et al. 2015; Mound et al. 2019), which decreases the mean wavenumber m̄ of the energy-

containing scales. Consequently, |ωM| ∝ |Bφ |m̄ decreases, thereby lowering the value of Ra for

reversals. Our understanding of the convective regime for polarity reversals is far from complete,

but the idea that polarity transitions are self-similar would eventually lead to improved parameter

constraints for reversals.
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